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ABSTRACT

Critical time windows exert profound influences on foetal physiological and
metabolic profiles, which predispose an individual to later diseases via a
‘programming’ effect. Obesity has been suggested to be ‘programmed’ during
early life. Foetuses and infants who experience adverse growth are subjected to
a higher risk of obesity. However, the key factors that link adverse foetal growth
and obesity risk remain obscure. To date, there is considerable evidence showing
that the overall balance between free radical damage and the antioxidative process
being challenged occurs throughout gestation. With the view that pregnancy is
a pro-inflammatory state confronted with enhanced oxidative stress, which
possesses similar characteristics to obesity (a chronic inflammatory state with
increased oxidative stress), oxidative stress is thus biologically plausibly be
proposed as the underlying mechanism between this causal-disease relationship.
Oxidative stress could act as a programming cue for the development of obesity
by inducing complex functional and metabolic deregulations as well as inducing
the alteration of the adipogenesis process. Thereby, oxidative stress promotes
adipose tissue deposition from early life onwards. The enhancement of fat
accumulation further exaggerates oxidative derangement and perpetuates the
cycle of adiposity. This review focuses on the oxidative stress pathways in prenatal
and early postnatal stages, from the aspects of various endogenous and exogenous
oxidative insults. Because oxidative stress is a modifiable pathway, this
modifiability suggests a potential therapeutic target to fight the obesity epidemic
by understanding the causal factors of oxidant induction.
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INTRODUCTION multifactorial in origin. Fundamentally,

obesity is caused by excessive energy intake
Obesity is a chronic disorder which is  compared with energy expenditure (Sikaris,
defined as excessive body fat depositionthat ~ 2004). One of the theories that explain the
presents an adverse effect on health  cause of obesity is ‘foetal origins of adult
(Fernandez-Sanchez et al., 2011). Obesity is  disease’ hypothesis, suggesting that in utero
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environment is capable of modulating the
physiologic and metabolic functions of the
foetus, resulting in disease 'programming’
(Barker, 2004).

A dramatic rise in overweight and
obesity are observed worldwide. Globally,
more than 10% of the world’s adult
population are obese (WHO, 2013). The
Third National Health and Morbidity
Survey (NHMS III) conducted in 2006
revealed the prevalence of overweight in
Malaysia to have increased from 16.6% to
29.1% (IPH, 2008), while obesity prevalence
tripled from 4.4% to 14.0% in comparison to
statistics from NHMSII in 1996 (Fatimah et
al., 1997). The updated NHMS in 2011
reported that the prevalence of overweight
and obesity were 29.4% and 15.1%
respectively, with a noticeable higher
percentage of obesity for women at 17.6%,
compared to men at 12.7% (IPH, 2011).

The prevalence of overweight and
obesity are also increasing in children
(WHO, 2013). Worldwide, the prevalence of
overweight and obese children under the age
of 5 in 2010 was 6.7% and was expected to
reach 7.8% in 2015 (de Onis, Blossner &
Borghi, 2010). The latest national prevalence
of overweight and obesity for children under
5 years old was 6.1%, with a higher pro-
portion among boys (7.6%) than girls (4.6%)
(IPH, 2011). By age group, the highest
prevalence was noted among children aged
5 to 9 years (IPH, 2011). This rising problem
of obesity has led to the development of
prevention and intervention programmes
against the disease starting in early life.
Thus, understanding the underlying causes
is crucial to combating the onset of the
pathology.

THE DEVELOPMENTAL ORIGINS OF
HEALTH AND DISEASE HYPOTHESIS

The concept of early life experience on later
health outcomes is not new. This causal-
disease relationship has come to light in
recent decades and forms the basis of the

’foetal origins of adult disease’ hypothesis,
which was proposed by Dr. Barker in the
early 1990s. He proposed that the
intrauterine environment has the capacity
to modulate the physiological function of the
foetus, resulting in disease 'programming’
(Barker, 2004). It is suggested that
physiologic, metabolic and structural
adaptations (programming) are made by
foetuses when exposed to adverse
(malnutrition) early environments, to
increase the chance of survival. However,
early programming conflicts occur when
postnatal conditions are improved, such as
in afood-abundant environment (Cottrell &
Ozanne, 2008). In the long term, these
programming changes are subsequently
translated into pathology, leading to an
escalated risk of chronic diseases.

Today, the early life origins hypothesis
is now described as the 'developmental
origins of health and disease (DOHaD)
hypothesis’, to explain the association
between foetal and infant growth patterns
with later disease development (Langley-
Evans, 2006). Either smaller or larger birth
size is associated with an increased risk of
disease. Several mechanisms have been
proposed to elucidate the underlying factors
of foetal growth variations (Cottrell &
Ozanne, 2008; Taylor & Poston, 2007).
Recently, oxidative stress has been shown
to act as the effect modifier for this causal-
disease association. Therefore, this review
focuses on the oxidative stress pathways,
which explain the linking factor underlying
‘programming’ association between foetal
growth and subsequent obesity risk. Given
the modifiable nature of the oxidative stress
level, a multitude of factors that influence
the alterations of the oxidative status during
prenatal and early postnatal stages are
discussed.

Disruption of the oxidative status in
pregnancy

Oxidative stress arises when an excessive
generation of reactive oxygen species (ROS)
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is not counterbalanced by intrinsic
antioxidant defence mechanisms (redox
status imbalance) (Lazar, 2012). Pregnancy
is a pro-inflammatory state that is
exaggerated with a variety of pro-oxidants
from both endogenous (e.g., enzymatic and
mitochondrial respiration) and exogenous
(e.g., diet and pollutant) origins (Furness,
Dekker & Roberts, 2011). Changes in
metabolic and physiologic profiles
throughout gestation predispose a pregnant
woman to systemic oxidative stress (Ghate
et al., 2011; Saikumar, Jaya & Renuka Devi,
2013).

During pregnancy, ROS is required to
contribute to embryonic development and
placental remodelling through signal
transduction (L&zér, 2012). The increased
mitochondrial oxidative metabolism from
reduced uteroplacental perfusion as well as
the increased energy demand and oxygen
requirement of the mother and foetus
exaggerates free radical formation
(Quanungo & Mukherjea, 2000; Zavalza-
Gomez, 2011). The inability to increase
oxidative stress and to generate redox-
related signalling could lead to deregulation
of the development process (Dennery, 2007).
In this case, higher oxidant levels are
expected in pregnant women than in non-
pregnant women as evidenced by other
studies (Bukhari ef al., 2011; Stefanoviee et
al., 2012). Under normal conditions, the
homeostatic concentration of ROS is
maintained by enzymatic and non-
enzymatic antioxidants (Burton & Jauniaux,
2011).

When a pregnant woman is exposed to
environmental stimuli that are oxidant and
pro-oxidant capable, or events occur in
pregnancy such as maternal diabetes or
hypertension, uncontrolled production of
ROS and depleted antioxidant capacity
attributed to the poor homeostatic adaptation
of antioxidants defend the maintenance of
the redox balance. These major perturbations
could result in an oxidative attack that is
capable of damaging biological molecules,

such as lipids, proteins, polysaccharides and
deoxyribonucleic acid (DNA) in maternal-
foetal units (Chelchowska et al., 2011),
leading to poor foetal growth. This scenario
is evidenced by a finding that indicated
increased oxidative injuries and depleted
antioxidant potential in newborns who were
either small for their gestational age (SGA)
or large for their gestational age (LGA),
together with their mothers (Saker et al.,
2008).

Oxidative stress and obesity

In addition to the detectable oxidative stress
in offspring who are born smaller or larger
than average, studies have found changes
of adipose tissue mass and insulin levels in
these individuals. A U-shaped trend of birth
size in relation to obesity has been s reported
previously. Newborns with a small birth size
who are prone to early catch-up growth in
infancy and childhood have a higher
tendency to store adipose tissue (Cottrell &
Ozanne, 2008) and an increased insulin
resistance (IR) (Chiavaroli ef al., 2009). On
the other hand, newborns with a large birth
size are inclined to increased adipose tissue
deposition in infancy and childhood, which
could relate to early adiposity rebound or
reflect an inherited susceptibility to obesity
(Chiavaroli et al., 2009). The similarity of
increased IR was observed in those children
(Chiavaroli et al., 2009).

Impaired insulin sensitivity is proposed
to be induced by oxidative stress through
pancreatic f-cell apoptosis at birth and
weaning (Bruin ef al., 2008). Alternatively,
the oxidants could impair insulin-signalling
elements and reduce glucose transport
activity in the myocytes (Henriksen,
Diamond-Stanic & Marchionne, 2011), via
modulation of gene expression (Campion ef
al., 2006). Hyperinsulinemia as a result of
pancreatic function deregulation as well as
IR has been proposed to induce
malformation in hypothalamic structures,
causing body weight deregulation and
obesity development (Cottrell & Ozanne,
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2008). Therefore, such data could be enhancement of fat accumulation further
regarded as evidence of underlying oxidant-  exaggerates oxidative derangement
induced metabolic alterations related tobirth ~ (Chiavaroli et al., 2009) and the subsequent
weight, which ‘programme’ the later  positive cycle of adiposity.

development of obesity. Oxidative stress

collectively plays a role as a programming  OXIDATIVE STRESS CAUSAL FACTORS
cue in the development of obesity by

inducing metabolic deregulation and  Prenatal and early postnatal environments
adipogenesis alteration, which promotes  exert potential oxidative stress effects on the
adipose tissue deposition starting in early ~ growth and developmental process of the
life. As demonstrated in Figure 1, the foetus and infant. These factors include

Prenatal environment ‘

metabolism under-nutrition obesity pollutant
Imbalance of redox status

/\

Differential gene expression |<—n Increased oxidative products

\)‘epleted antioxidant status
Pregnancy event -

(e.g., GDM, PIH) <+—>  Excessive oxidative stress L—

Pregnancy Maternal Maternal Environmental ‘

‘____l__L Y
Foetal growth Functional and metabolic
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Infant feeding regime ‘ ' Poor food choice

Early postnatal environment

Figure 1. Factors in prenatal and early postnatal environments that provoke the surge of
oxidative stress and induce the programming of obesity
Note. GDM=gestational diabetes mellitus; PIH=pregnancy induced hypertension



Oxidative Stress in Early Life and Later Obesity Development 387

maternal nutrition, environmental
pollutants, pregnancy events, the infant
feeding regime and food choices in infancy
and early childhood.

A. Prenatal environment
Maternal nutrition

The maternal nutrition environment which
encompasses dietary intake, circulating
nutrient, uteroplacental blood flow and
nutrient transfer, is a dominant factor in
determining foetal growth and consequent
health (Stephenson & Symonds, 2002).
Malnutrition (under-nutrition or over-
nutrition) has been shown to impair energy
balance systems and predispose to early
onset of obesity (Cottrell & Ozanne, 2008).

Maternal undernutrition

Early findings on maternal nutritional
deprivation with low birth weight and
subsequent chronic diseases formed the
basis of the ‘thrifty phenotype hypothesis’.
Maternal undernutrition refers to inadequate
intake of various macronutrients and
micronutrients. Protein deficiency could
impair cellular antioxidant capacities
because of its role as a synthesis component
for the antioxidant defence system, such as
glutathione and albumin (ROS scavenger)
(Luo et al., 2006). This assumption is
confirmed by a previous study that showed
that the extent of the depletion of the
antioxidative enzyme activities and the
enhancement of tissue lipid peroxidation
were affected by the severity of protein
deficiency (Huang & Fwu, 1993).

In comparison to energy or
macronutrient malnutrition, the prevalence
of micronutrient deficiency is higher because
of a poor quality diet, especially in many
nutrition transitional countries (Eckhardt,
2006). Plenty of micronutrients are anti-
oxidants that interact or act synergistically
to alleviate oxidant stress (Jacob, 1995).
Inadequacy of metabolically related vitamins
such as folate and cobalamin (B,,) promote

hyper-homocysteinemia (Vigna et al., 2011),
which induces oxidative stress through
auto-oxidation (Loscalzo, 1996), glutathione
peroxidase (GPx) impairment (Upchurch et
al., 1997) or low density lipoprotein (LDL)
oxidation (Pfanzagl et al., 2003). Vitamin C
deficiency reflects the loss of antioxidant
protection that inactivates nitric oxide or
increases cellular GPx concentrations, to
counteract homocysteine-induced oxidative
stress (Kanani et al., 1999). Low dietary zinc
has been associated with decreased
superoxide dismutase (SOD) activity in
overweight and obese individuals (Tung-
trongchitr et al., 2003), suggesting that a
relationship exists between zinc deficiency,
oxidative stress and obesity.

Changes in micronutrient status have
been hypothesised to determine the changes
of adiposity (Garcia, Long & Rosado, 2009).
In this context, an inadequate supply of
maternal antioxidative nutrient could force
the foetus to adapt to an enhanced in utero
oxidative stress environment via gene
expression and metabolic modulation, and
subsequently programme the individual to
acquire obesity. Supportive evidence is
shown by the association between maternal
dietary restriction in multiple vitamins and
minerals with increased rat offspring
adiposity, insulin resistance and oxidative
stress as well as differential expression of
adipokines (Lagishetty et al., 2007; Venu et
al., 2004). In other words, micronutrient
deficiency could increase fat deposition,
which is regulated by antioxidant-mediated
adiposity reduction.

The metabolic deficiency effects of
micronutrients in influencing adipokines
and lipid metabolisms have been reported
inareview (Garcfa et al., 2009). For example,
Campion et al. (2006) found that dietary
ascorbic acid reduced body weight and fat
content in rats that were fed a high fat diet,
through the down regulation of genes that
are involved in adipogenesis, adipocyte
differentiation, glucocorticoid metabolism
and insulin resistance. In a separate study,
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Aeberli et al. (2006) indicated that vitamin C,
vitamin E and b-carotene intakes were
significant negative predictors of leptin in
overweight Swiss children. Development of
insulin and leptin resistances resulting from
altered gene expression caused by a
deficiency in specific antioxidants, in turn,
increases the risk of adiposity and obesity.

Maternal over-nutrition/ obesity

The association between maternal over-
nutrition and adverse health outcomes is of
particular concern recently because of the
increasing rate of obesity. A similar
development of an obese phenotype, which
is comparable to a nutrition deprivation
condition, is observed in the respective
offspring. Maternal obesity is shown to
further increase the susceptibility of a
pregnant woman to oxidative injury, thus
exacerbating the pathophysiological
background of obesity development.

Obesity is a chronic inflammatory state
that acts as a source of systemic oxidative
stress (Piva et al., 2013). Several mechanisms
involving adipocyte-generating oxidative
stress have been proposed. Excessive
adipose tissue accumulation stimulates the
rise of cytokines, which is attributed to the
formation of free radicals (Ferndndez-
Sénchez et al., 2011). Adipose tissue is also
responsible for the upregulation of
Nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase activity via
angiotensin II, which plays a significant role
in the major route for ROS production in
adipocytes (Ferndndez-Sénchez et al., 2011;
Furukawa et al., 2004). Other mechanisms
are through mitochondrial and peroxisomal
oxidation of fatty acids, over-consumption
of oxygen and lipid-rich or antioxidant-poor
diet induction (Fernandez-Sanchez et al.,
2011; Vincent, Innes & Vincent, 2007). Hence,
the biomarkers of oxidative damage are
higher in obese individuals and increase
according to the magnitude of the adiposity
and fat distribution (Amirkhizi et al., 2010;
Stefanoviee et al., 2012).

The authors speculate that the
exaggeration of maternal oxidative stress
induced by pregnancy obesity, in turn
increases foetal oxidative stress and causes
in utero adipokine deregulation and insulin
resistance, which could predispose offspring
to obesity. In support of this scenario,
newborns with obese mothers were shown
to be at high risk of developing the LGA
phenotype, which is associated with
oxidative stress (Chiavaroli et al., 2009) and
increased body mass index (BMI) in the
future (Catalano & Ehrenberg, 2006). Malti-
Boudilmi et al. (2010) noted that, even among
AGA infants born to obese mothers, a higher
oxidative stress was exhibited than their
non-obese counterparts. Other evidence is
based on the association between maternal
obesity and infant body composition. The
offspring from obese mothers were found to
have higher levels of fat mass instead of lean
mass (Catalano et al., 2009; Catalano, 2010).
Otherwise, a longitudinal cohort study
reported that maternal pregravid obesity was
the strongest predictor of neonatal adiposity
and childhood obesity (Catalano et al., 2009).

Environmental pollutants

Rapid global industrialisation has brought
significant environmental changes and
increasingly severe pollution. Prenatal
exposure to airborne environmental
chemical substances and tobacco smoke
have been shown to increase oxidative stress
and induce genotoxicity, causing long-term
health effects (Mohorovic, 2004; Maritz &
Mutemwa, 2012). There is evidence that
maternal exposure to toxic agents from
household sources, environmental tobacco
smoke (ETS) or airborne particulate matter
(PM), such as polycyclic aromatic hydro-
carbons (PAH), nicotine and combustion-
derived particles (CDP), are associated with
an increased risk of intrauterine growth
retardation (IUGR), preterm birth (PTB) and
low birth weight (LBW) (Aycicek & Ipek,
2008; Delpisheh et al., 2009; Wahabi et al.,
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2013) which is especially critical in the
earliest phase of embryo growth (Mohorovic,
2004). An in vivo study indicated that lower
weight gain during lactation was found in
offspring who had inhaled diesel exhaust
particles (DEP) , which could be caused by
transferring the toxicants via breast milk,
thus delaying the biological effect from the
point of exposure (Hougaard et al., 2008).

Overall, this association could be
explained by the detrimental oxidative stress
programming effect that is induced by
environmental toxicant exposure on birth
outcome, either directly or indirectly. As
proposed by Kannan et al. (2006) PM-
induced oxidative stress could interrupt the
transplacental oxygen and nutrient
transport, or it could act through
hemodynamic responses to restrict foetal
growth. Mohorovic (2004) proposed that
combustion-derived particles induced
oxidative stress by directly inhibiting
antioxidant and enzymatic activities, which
subsequently adversely affected early
embryonic development. Supportive
evidence is reported by the higher level of
oxidative stress in LBW infants who were
born to smoking mothers (Aycicek & Ipek,
2008; Saker et al., 2008; Tsui et al., 2008). In
an air polluted area, a higher degree of DNA
damage was also observed in the maternal
blood and placenta (Topinka et al., 1997).
However, the risk to exposure could be from
individual differences, which depends on
the presence of metabolic polymorphic genes
(Delpisheh et al., 2009).

Although born smaller in size, the
environmental pollutant-exposed infants
are associated with a higher risk of later
obesity. This relationship is supported by
the studies that found increased odds of
paediatric overweight and obesity among
children with mothers who smoked during
pregnancy (Goroget al., 2011; Ino et al., 2011).
In one cohort study, prenatal pollution
exposure (dioxin-like compounds PCBs and
the pesticide metabolite DDE) was shown to
be associated positively with BMIin children

between 1 and 3 years of age (Mead, 2009).
A possible mechanism is based on the rapid
catch-up growth concept. Smaller infants are
more susceptible to postnatal catch-up
growth, causing greater adiposity in later
life (Ong et al., 2002). This relationship is
supported by the common phenomenon of
catch-up growth, which is normally
observed post-natally in children with
intrauterine smoke exposure. Women who
smoke tend to prefer bottle feeding instead
of breast feeding, leading to higher infancy
weight gain (Fried, 2002). Altogether, these
findings suggest that maternal exposure to
environmental pollutants induce foetal and
infancy growth variations, which could be
mediated through pollutant-induced
oxidative stress configurations followed by
catch-up growth, thus increasing the risk of
obesity.

Maternal diabetes

Gestational diabetes mellitus (GDM) is an
altered redox state that acts as a significant
source of foetal oxidative stress (Dennery,
2007). There is irrefutable evidence of
oxidative stress in cases of diabetic mothers
and their infants, including increased levels
of xanthine oxidase, lipid peroxidation,
lipoperoxide and proteolytic activity. The
increased generation of ROS has been
suggested to arise from the oxidation of
glycated protein (Lazar, 2012) or the auto-
oxidation of glucose and other small auto-
oxidisable molecules, which are catalysed
by transition metals (Hunt & Wolff, 1990).
Alternatively, it could be attributed to the
activation of xanthine oxidase (XO), the main
free radical-producing enzyme, which
results from hyperglycaemia, hormonal
alteration or increased ATP breakdown (Biri
et al,, 2006). Also, impairment of antioxidant
defences could deactivate radical scavenger
function. These proposed mechanisms
establish explanations for the increased
oxidant load that is seen in GDM mothers
and infants.



390 Loy SL, Sirajudeen KNS & Hamid Jan [M

The presence of oxidative stress was
suggested to be implicated in the pro-
gression and/ or pathology of GDM (Lo pez-
Tinoco et al., 2011), resulting in biochemical
and metabolic disturbances within the foetus
and, thereby, programming foetal functional
and developmental features. Rat embryos
cultured under hyperglycaemic conditions
showed significant growth retardation and
development malformation, along with
increased ROS formation and decreased
glutathione concentration (Trocino et al.,
1995). In humans, microsomia or IUGRs
could also be present in severe maternal
diabetes that is complicated by vasculopathy
and nephropathy, but with limited informa-
tion on later consequences (van Assche,
Holemans & Aerts, 2001).

On the other hand, a greater prevalence
of macrosomic phenotypes was proven
among offspring of diabetic mothers (Hillier
et al., 2007). Such foetal growth abnormali-
ties resulting from GDM were associated
with an increased rate of higher BMI and
adiposity (Lindsay et al., 2000; Vohr,
McGarvey & Tucker, 1999), via the mediation
of foetal insulin responses (van Assche et
al., 2001), which could be induced by oxi-
dative stress (Bruin et al., 2008). As reported
by Hillier et al. (2007), the effect of hyper-
glycaemia in pregnancy on childhood
obesity could also operate through normal
birth weight offspring of diabetic mothers,
which underlies the silent background effect
of the oxidant load on metabolic program-
ming, which is induced by excess glucose
exposure.

Maternal hypertension

There is considerable evidence that oxidative
stress acts as a key contributing factor to the
pathogenesis of pregnancy-induced
hypertension (PIH) (Lazér, 2012). Women
with pre-eclampsia (PE) manifest abnormal
ROS production and increased circulating
markers of lipid peroxidation (Mistry et al.,
2008; Mohanty et al., 2006), which are
secondary to reduced placental perfusion

(Roberts, 2000). Activation of the XO system
(Bainbridge, Deng & Roberts, 2009) or
stimulation of NADPH oxidase by AT1
receptor agonistic antibodies from PE
women (Dechend et al., 2003) was suggested
to be a potential source of oxidative stress,
increased ROS production and inflam-
matory responses. Otherwise, neutrophil
activation in PE could produce excess ROS
to trigger lipid peroxidation (Sharma &
Agarwal, 2004). Antioxidant defence is
compromised because of the failure to cope
with an increased oxidative demand; thus,
itis hypothesised to enhance endothelial cell
oxidative damage (Mistry et al., 2008) via the
decomposition of polyunsaturated fatty
acids in the membranes (Bukhari et al., 2011).
Vasoconstriction in PE, resulting from
oxidative destruction of nitric oxide (NO) by
ROS (Sharma & Agarwal, 2004), could also
reduce antioxidative vitamin absorption
from the gut (Mohanty et al., 2006).

Aside from the effect of placental
insufficiency, oxidative challenges in PIH
could partly predispose to the risk of poor
foetal outcomes such as PTB, IUGR or SGA,
as observed in one third of the cases of pre-
eclampsia. This hypothesis could be
supported by the presence of excess
oxidative stress but inadequate antioxidant
defence in the pre-eclamptic foetus (Mistry
et al., 2008). Normal birth weight infants were
also reported, in most cases, of term PE (Xiong
et al., 2002) and even some were born LGA
(Xiong et al., 2000), suggesting the presence
of a heterogeneous disorder (Xiong et al.,
2002) instead of placental dysfunction
(Ferrazzani et al., 2011)in affecting the birth
outcomes of PIH pregnancies. However, the
effect of oxidative stress on the foetus could
extend beyond foetal growth and could
predispose to later vascular disease. Such
an association is supported by Davidge et
al. (1996), showing endothelial activation
with the stimulation of NO in pre-eclamptic
foetuses across a wide range of gestational
ages, which increases with adiposity and
cardiovascular risk factors (Kelly et al., 2010).
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B. Early postnatal environment
Infant feeding regime

The trajectory of infant growth is highly
dependent on an early infant feeding regime.
Human milk has been shown to be an ideal
food during infancy, especially during the
first month of life (Oddy, 2002). Breast
feeding has been reported to protect against
later obesity development, which is
supported by epidemiology evidence and
meta analysis (Horta et al., 2007; Koletzko et
al., 2009; Owen et al., 2005). Also, a dose-
response association has been shown,
indicating a lower risk of adiposity with an
increased duration of breastfeeding
(Koletzko et al., 2009; Owen et al., 2005).
Several biological mechanisms have
been proposed to explain the protective effect
of breast feeding against adiposity, such as
calorie and protein metabolism, endocrine
responses and adipocyte modulations
(Heinig et al., 1993; Horta et al., 2007; Lucas
et al., 1980). Lower calorie metabolism and
protein intake (Heinig et al., 1993; Whitehead,
1995) with a slower early postnatal growth
rate (von Kries ef al., 2000) in breastfed
infants accounted for a decreased risk of
obesity compared to formula-fed infants.
High blood urea nitrogen resulting from
excess protein excretion was suggested to
impose metabolic stress in formula-fed
infants (Heinig et al., 1993). A greater insulin
response, which was observed in formula-
fed infants, increased the tendency for fat
deposition and early adipocyte development
(Horta et al., 2007; Lucas et al., 1980). Indeed,
oxidative stress was reported to be involved
along those pathway mechanisms
(Henriksen et al., 2011; Zhang, Yang &
Cohen, 1999). Moreover, a higher amount of
nutrients and elements in formula milk
implies a higher substrate oxidation than
human milk intake. Thus, this strategy
produces more ROS by mitochondria, which
challenges the infant’s immature anti-
oxidative defence system (Luo et al., 2006).
From this perspective, we speculate that
antioxidant and anti-inflammatory pro-

perties of human milk could be the factors,
at least in part, that regulate the onset of
oxidative stress through permanent
modifications in metabolism during the
neonatal period, other than counteracting
immunological diseases. As mentioned
previously, the foetus encounters various
oxidative insults in utero. Atbirth, the change
from a hypoxic to a relatively hyperoxic
environment could enhance the oxidative
aggression, as evidenced by the presence of
oxidative stress in full-term healthy infants
(Friel et al., 2004). This situation is especially
worsened in PTB infants because of the
immature antioxidant system, incomplete
placental transfer of antioxidants and
mechanical ventilation (Robles, Palomino &
Robles, 2001; Shoji et al., 2003). Thus, it is
conceivable that the antioxidant capacity of
human milk plays a significant role for
resisting the oxidative challenge in infants,
although the mechanism remains, for the
present, obscure.

A variety of antioxidant components has
been reported to be present in human milk
and have been shown to provide better
antioxidant power than formula milk (Friel
et al., 2002). Recently, novel antioxidative
peptides derived from enzymatic digestion
in human milk were discovered (Tsopmo et
al., 2011). The radical scavenging activity of
human milk is supported by results showing
lower plasma total peroxide, oxidative stress
index and urinary 8-hydroxydeoxy-
guanosine (8-OHdG: product of oxidative
DNA damage) in 1-month-old and 3- to 6-
month-old breast fed infants compared to
bottle-fed infants (Aycicek et al., 2006; Shoji
et al., 2003). Additionally, one study noted
that infants fed human milk demonstrated a
greater total radical trapping capacity in
plasma compared to infants fed formula milk
(van Zoeren-Grobben et al., 1994). In parallel
with another study, alterations in enzymatic
antioxidant defences were suggested to
relate to early food intake after birth
(Gonzalez, Madrid & Arahuetes, 1995).
Thus, the beginning of postnatal infant
nutrition is critical in combating diseases.
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Poor food choice in infancy and early
childhood

A liquid diet or milk feeding is inadequate
to meet the demand of a growing infant after
the age of six months. Thus, early childhood
nutrition is important for determining the
intake of essential nutrients and elements
for subsequent growth. However, studies
indicate the foundation for obesity could be
laid when young children are exposed to a
poor nutritional practice environments (Fox
et al., 2004; Jennings, McEvoy & Corish,
2011).

A recent study conducted in Ireland
showed that pre-school children (aged 1-5
years) were served with inappropriate
beverages and snacks (Jennings et al., 2011).
Another national study in America, the
Feeding Infants and Toddlers Study (FITS),
raised the concern of a low intake of fruits
and vegetables, with an increased intake of
high calories and low micronutrient foods
among infants and toddlers aged 4 to 24
months. Increasing intakes of sugary foods
and sweetened beverages were observed in
a majority of infants over 8 months old (Fox
et al., 2004). Such early food experiences,
especially during the first year of life, persist
as future food preferences (Hill, 2002). In
other words, unhealthy eating habits could
be shaped at this sensitive period, which
predisposes individuals to the risk of
adiposity. As evidence, a low exposure of
home-cooked fruits and vegetables (FV) at 6
months was shown to reduce childrens’ FV
intake at7 years of age (Coulthard, Harris &
Emmett, 2010). Similarly, early infancy
exposure to sweetened water resulted in a
heightened sweet preference during
childhood (Pepino & Mennella, 2005).

The calorie- and sugary-dense but
antioxidant-poor diet during early
childhood could exacerbate the background
of prenatal oxidant stress. Subsequently,
there could be a resulting more frequent
adverse programming, thereby partly
contributing to the increasing prevalence of

obesity. Based on the in vivo model, an
elevation of urinary 8-OHdG was found in
mice that received a vitamin deficient diet
and a sweet beverage (Li, Kawai & Kasai,
2007). Furthermore, an increased intake of
fructose or sucrose, the common sugars used
in manufactured food was shown to induce
metabolic abnormalities by disrupting the
redox balance and accelerating oxidative
stress (Busserolles ef al., 2002). A supportive
epidemiology study was indicated by an
inverse association between fruit and
vegetable consumption with oxidative stress
markers (Holt et al., 2009). Additionally, a
high amount of toxic agents (e.g., arsenic,
cadmium and lead) was reported to be
present in infants” complementary foods,
contributed mainly from their raw materials
(Ljunget al., 2011), which increases oxidative
generation with a cascading series of cellular
signalling and regulation events (Barch-
owsky et al., 1996; Stohs et al,, 2001). Recently,
a large body of findings has shown that
furan, a heat-induced contaminant that is
carcinogenic to humans, is formed in
commercial baby foods (Lachenmeier et al.,
2010). Such emerging evidence suggests that
poor food choices that are pro-oxidative
during early childhood could be sensitive
targets to oxidative stress programming for
the development of obesity.

CONCLUSION

Pregnant women are vulnerable to various
oxidative insults in the forms of physiology
and chemical and physical. A combination
and interaction of different insults could,
likewise, contribute to the amplification of
oxidative stress. Developmental endogenous
(free radicals from cellular metabolism) and
exogenous (environmental stimulants)
oxidant exposure induces an antioxidant
response that is associated with a loss of
redox balance in the foetus and neonates.
Subsequent programming of the foetal
growth increases the risk of chronic disease.
Thus, the ability of maternal antioxidant
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capacity to maintain the balance of redox
status in pregnancy is critically important.
Restoration of antioxidant balance
before and during pregnancy could be an
early prevention strategy to reduce the
prevalence of offspring obesity or the positive
adiposity cycle throughout generations.
Dietary modification or supplementation
with antioxidants and photochemicals
could be a priority (Vincent ef al., 2007). In
fact, the concept of multiple antioxidants is
more essential than the single antioxidant
and is supported based on their synergistic
effects on birth weight (Osorio et al., 2011).
However, the availability of a human study
on the effect of antenatal administration of
antioxidant supplementation on offspring
adiposity is lacking. Recently, a study onan
animal model has shown that antioxidant
supplementation to pregnant Western diet-
fed rats decreased adiposity in offspring (Sen
& Simmons, 2010). Although there could
have been a comparable situation between
animal and human models, longitudinal
studies in humans are of primary importance
for proving that antioxidant restoration in
pregnancy through dietary modification or
supplementation is practical for offsprings’
later health. To translate this intervention
into public health messages for obesity
prevention, more randomised trials are
needed to demonstrate the feasibility and

safety.
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